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Abstract
g The objective of this thesis is to examine the feasibil-
P
t; ity of applying a vortex lattice method to propeller perfor-

mance analysis. This method allows the calculation of span-
| wise and chordwise pressure distributions on thin propeller
blades of arbitrary plangorm. |
The research for this project involves the application
of a vortex lattice method to a propeller with twisted, non-
cambered, constant chord blades. The analysis assumes incom-
pressible, inviscid flow over thin sections. The helical

wake is modeled as a series of straight vortex filament seg-

mehts.
' 3 A computer code has been developed which uses a vortex
lattice method to predict performance for propellers. Results 1

are shown for several operating conditions, using various
angle of attack distributions, numbers of blades on the pro-

peller, and advance ratios. Similar results are shown using

the blade-element theory for comparison. Results indicate

.
!
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.
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that this vortex lattice method is applicable to initial pro-
_peller performance analysis.
i
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APPLICATION OF THE VORTEX-LATTICE METHOD
TO PROPELLER PERFORMANCE ANALYSIS ' -

I. Introduction

Background

Recent increases in_the cost of fuel have revived inter-
est in the propeller for next-generation aircraft propulsion.
Advanced propeller designs for turboprop applications are
being investigated by NASA-Lewis (Ref 1). These newer designs
have low a;péct-ra¥ios (less than five), swept blades, and
six or more blades per propeller. The relative merits of the
newer designs have been investigated through wind tunnel and
flight tests. The method most often used for propeller anal-
ysis (blade element, or strip theory) is not accurate for these

propeller configurations.

Problem Statement

A need exists for an analytical method which will give
an approximate pressure distribution on an arbitrary planform.
The vortex lattice method is chosen for this role because of

Cits widely demonstrated accuracy in wing applications.

The vortex lattice method developed here permits deter-
mination of both spanwise and chordwise distributions of lift
over blade surfaces, and thus it is possible to find the

bending and twisting moments of the individual blades.




Similarly, it is possible to use this method iteratively to

find the blade camber surface which will generate a desifed

pressure distribution. This method has a great deal of po-

tential to become a powerful design tool, from both an aero-
dynamic as well as a structural standpoint.

Modifications to the vortex lattice method for modelling
propellers primarily consist of changes associated with the
wake. The wake produced by a wing is nearly planar, while
the wake of a propeller is helical. The wind velocity seen
by a wing 1s assumed to be constant over the entire wing.

The magnltude of the wind velocity is equal to the flight
speed. The wind velocity seen by a propeller at any point
on a blade is a vector sum of both the rotational and flight
speed of the blade. These changes require some approxima-
tions and computational routines which are not necessary in
the vortex lattice method for wings. With the advent of the
high-speed digital computer, the execution of these routines
becomes feasiﬁle.

To examine the accuracy of the vortex lattice method, a
comparison is made with a proven method of propeller analysis -
- blade element theory. This method uses airfoil section theory
applied to spanwise sections (strips) of a propeller blade to
establish performance figures, these being thrust, torque and

'efficiency. Empirical corrections are made in order to com-

pensate for three-dimensional (aspect ratio) effects,




compress:pility, thickness and camber. Blade element theory

is widely accepted in predicting performance for blades with
traditional configurations (large aspect ratio, no sweepback).
Comparison cases are presented using configurations for which
the blade element method performs well.

Vortex lattice methods have been extensively applied to
thin lifting surfaces, typically wings. In the propeller
application, vortex lattice methods have several major advan-
tages over blade element theory. These are due primarily to
the method of modelling of the blade and the flow field. Vor-
tex latticé ﬁetﬁod; account for both interference effects due
to other blades and three dimensional effects due to a finite
aspect ratic without any empirical correction factors required.
No panel-specific aerodynamic parameters (such as Cli and
GOL) are required, since the camber can be approximated by
Placing a series of flat panels along the camber line. This
flexibility allows a great deal of freedom in choosing pro-
peller profiles, in that the user is not restricted to known
airfoil profiles.

Several problems exist wiih the vortex lattice methods

. which are not encountered with blade element theory. A much
more detailed geometry description is required to accurately
model a configuration. An extensive program must be written
and verified. Finally, computational runs are more expensive
than those using strip theory. A vortex lattice solution

should not be used if strip theory may be adequately applied.

...................




This analysis is potentially most useful for studying
non-standard propeller designs without requiring expensi#e
and time-consuming flight or w...d tunnel tests. The newer
propellers, with many blades and large chords, cannot be
effectively modeled by older methods. The objective of this
study is to evaluate a method that can be used to rapidly

investigate new propeller designs.

Assumptions

This vortex lattice method assumes potential incompres-
sible flow. -On-each panel, the total velocity (equal to the
vector sum of flight speed and rotational speed) is calculated
{ at a central position and is taken as a constant over the

entire panel. The geometric parameters relating to flight

conditions are applied in different parts of the solution:

Zero angle-of-attack geometry (including blade twist) is
represented in the main coefficient matrix, while angle of
attack is represented in the forcing function vector. The
blade is assumed to be rigid, with no deformation due to
pressure variations along the blade. The wake is assumed

to be fixed, with a constant helix angle (Fig 1l).




II. Development of Vortex Lattice Methods for Wings

Background

Vortex lattice methods have been developed for calcula-
ting performance of thin, swept wings. The methods are used
to find chordwise and spanwise distributions Qf lift and in-
duced drag. They are a member of the class of discrete singu-
larity methods. 1In this section, the basic concepts of a

vortex lattice method are described as applied to a wing.

Assumptions and Limitations
Most of the assumptions and limitations of the vortex

lattice method for wings are associated with the modeling of
the wake. The actual wake position for a wing at an angle of
attack is a curved stream surface, but is assumed to lie along
the wing chord line for analytical purposes. Tﬁis assumption
is acceptable at small angles of attack, where the deflection
of the wake is small enough to be ignored. The model of the

wing takes the wing camber line as a rigid, fixed fluid

boundary.

Governing Equations

- Vortex lattice methods involve the construction and solu-
tion of a series of simultaneous linear equations to find a
distribution of circuiation on a lifting surface. The un-
knowns in these equations represent the circulation distribu-

tion on the lifting surface. The coefficients are geometrically

5
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determined influence coefficients, each of which represents
the downwash at a given point (control point) per unit cir-
culation due to a given vortex. The forcing function repre-
sents the total downwash at a given control point. The gen-
eral form of the equation is given in Eq 1, where A is the
influence coefficient matrix, T is the circulation distribu-
tion vector, and W is the downwash velocity distribution vec-

tor.

(a] {r} = {w} (1)

The influence'céefficient matrix A is determinedvby the blade
geometry. The downwash velocity vector is determined by
flight conditions. Equation 1 then becomes a statement of
the flow tangency boundary condition at control points on the
blade surface. A linear equation solver is used to solve for
the circulation vector I'. Once TI' is known, the desired per-
formance parameters are calculated. The major task is to

determine this circulation vector.

Influence Coefficient Matrix Assembly
The first portion of the analysis that will be discussed

'is the construction of the influence coefficient matrix, A.

In a vortex lattice method, a lifting surface that sheds
a continuous vortex sheet is approximated by a finite number
of horseshoe vortices. Each of these vortices is composed of

a bound vortex and a pair of semi-infinite trailing vortices.




........................

The wing to be analyzed is initially divided into a grid

structure, or lattice. A complete description of the lattice

is found in Appendix A. The bound vortex is placed along the
quarter-chord of each element, on the mean camber line of the
wing. Vortex filaments are shed from the ends of each bound
vortex. The trailing vortices are shed along the stream sur-
face coincident with the-wake due to the lifting surface.

For the physical wing, this wake follows a curved path, ini-
tially parallel to the bisector of the trailing edge of the
wing, and asymptotically approaching the free-stream direction

(Fig 2). For analytical purposes, the wake position is

assumed to be always parallel to the wing axis. This makes

the wake position independent of
depends only on the locations of
points, A is also independent of

to £find a solution for any angle

angle of attack. Since A

the wake and the control
angle of attack. 1In order

of attack, only the forcing

function vector W must be altered. At small angles of attack,
this wake position assumption is acceptable, since the solu-
tion is insensitive to any reasonable wake location for wings.
The Biot-Savart Law is used to calculate A. The Biot-
. Savart Law states that the velocity induced at any point due

to a vortex filament of strength I' and length dL is:

(2)

where dV is the incremental velocity vector induced at an

L
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.......................

.........
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arbitrary point due to a vortex filament segment dL; T is

the strength of the vortex filament segment; and r is the
vector whose tail is located at the center of the filament
segment, and whose head is located at the given point (con-
trol point). This equation is evaluated over all incremental
line segments dL and the total velocity (Wij) at poiht i due

to horseshoe vortex j is_found. This produqes Eq 3, where

x E —
Aij = I R X KI‘:‘
K=l = 13 -
Ikril

and K is the total number of dL-segments associéted with ’
horseshog vortex j. yry is the vector from filament segment
K to control point i. Aij is a summation of this series of
vector cross product operatioﬂs. For straight vortex fila-
ments, this summation can be evaluated using ihtegrals whose
limits are established by the filament endpoints, and the

control point coordinates. This development is shown in

Appendix B. Thus,

Aij * T, = wij (3)

..The influence of an entire horseshoe vortex is found by in-

tegrating over all three portions of the horseshoe (bound
vortex plus two semi-infinite legs), and adding the results.
These results constitute the elements of the influence co-

efficient matrix A.




...............................

Eacl wing usually has a symmetric counterpart. This
symmetry may be exploited if the flight conditions do not
include yaw. For the port wing, only the y-axis coordinate
values are different than those of the starboard wing, and
only by a sign. Using this symmetry, the input geometry of
one wing is used to produce the coordinates of its mirror

image, which are used in-the calculation of A.

Calculation of the Boundary Condition Vector

To find a distribution of circulation on a-;ing, A must
be calculated at points where the flow conditions are known.
These are control points, located mid-panel span on the three-
quarter panel chord line on the camber surface of the wing
(Fig 3). If N horseshoe vortices exist in a flow field, N
control points are required to enable the solution of the N
simultaneous egquations.

The right hand side of Eq 1 is the boundary condition
vector, representing the component of the free stream velo-
city that is normal to the lifting surface at the control
point. The boundary condition requires that there be no
flow through the lifting surface. This condition is satis-
:'fied at the controi point of each panel. The component of
free stream velocity normal to the lifting surface at the
control point must be cancelled by the velocity normal to
the surface at the control point that is induced by all of

the horseshoe vortices in the flow field (Fig 2). Therefore,

PO T L T S N e T el T e . -, . S . . " - N .
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the bourdary condition becomes

]
o

Wy + U_(sin(a, - tan"l(%x-z-)i))

where W, is the induced downwash velocity, U, is the free-
stream velocity, oy is the known angle of attack of the panel,
and (dz/dx); is the local slope of the camber line (Fig 4) .
For the case of the flat-plate at small angle of attack,

(dz/dx)i = 0, and sin(ai) = a.. Then,

i
Wy = =U, * a4 (4)

This vector is the right hand side of the general equation 1.

The form of the egquation becomes
[Aij]{rj} = -{UQ ¢ ai} (S)

The boundary condition vector is a product only of the free
stream (which is spanwise constant for a wing) and the panel
angle of attack (which is constant for a flat, non-twisted

wing).

te nation of Perfo ne

Once A and the boundary condition vector are determined,
"‘the circulation distribution is calculated. A routine is
used to solve the system of linear equations, determining the
strength of each horseshoe vortex. From a distribution of
horseshoe vortex strengths, and flight conditions, overall

wing performance is calculated.

10
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Each horseshoe vortex is composed of a bound vortex and
two semi-infinite trailing vortices that are shed along the
wing axis. The Kutta-Joukowski Theorem states that lifting
force per unit span is equivalent to density multiplied by
the cross product of the circulation vector and the free
stream velocity vector. The cross product of a trailing vor-
tex vector and a free stream vector is zero since they are
parallel within the approximations made, so only the bound
vortex produces a force. This force is a vector 'sum of lift

and induced drag. The proportion of lift to induced drag is

- - -

determined solely by local angle of attack.

_Total wing configuration lift and induced drag is the
summation of lift and drag for all of the panels in the flow
field, which is twice the value of the starboard wing for the
symmetrical case. '

Wing pressure distribution is found knowing the total
panel lifting force, and assuming constant pressure over each
panel. The panel pressure is found by dividing the lifting

force by the panel area.

11
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III. Application of Vortex Lattice

Methods to Propellers

The propeller introduces some unique conditions into
the problem which require a more complex set of assumptions

regarding both the wake and the boundary condition vector.

Background

The vortex lattice method is selected as a solution
method to the propeller problem based upon the accuracy shown
in solving wing problems. The other primary advantage of

implementing a vortex lattice method is the adaptability of

the method to solution by digital computer.

Assumptions

A propeller can be viewed as a wing in a rotational flow
field. Since the vortex filaments are shed parallel to the
local total velocity, the wake that is shed by a propeller
is helical. In the case of the wing, the integration of the
Biot-Savart Law over an entire vortex filament can be per-

formed analytically because the modelled filament is straight.

~ The propeller wake cannot be easily solved in this manner

because of the helical wake. The complete solution for the
construction of the influence coefficient matrix is found in
Appendix C.

In the analytical procedure for the wing, the solution

is calculated with the tréilinq vortex filaments extending

12
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to infinicy. For the helical wake of the propeller, this is
neither practical nor possible because this requires an in-
finite number of calculations. To establish where the helical
wake no longer significantly influences the solution, trial

runs are required.

Influence Coefficient Matrix Assembly

The influence coefficient matrix A is found using a pro-
cedure similar to that used for the.wing. The integration of
the Biot-Savart Law is performed using a numeriégl represen-
tation of each vortex filament as a series of discrete line
segments. Each line segment AL is a small arc which is repre-~
sented by a straight line (Fig 5). The integral must be
evaluated for every iine segment-control point pairing in the
flow field. The velocity per unit of circulation inducad at
a given control point due to a horseshoe vortex is calculated
by summing the Biot-Savart inteqgrations of every dL for that
given horseshoe.

Multiple blades on a propeller configuration are arranged
symmetrically. A two-bladed propeller sheds two wakes, each

wake m radians out of phase with the other. 1In modelling a

'”symmetrical configuration only the base blade geometry is

entered. This base blade establishes the locations of the
control points and the horseshoe vortices. By symmetry, the
other (N-l) blades on an N bladed configuration will shed

trailing vortices at intervals of 2n/N radians. After per-

13




forming the summation of integrations over all of the vortex

filaments of the base blade, the procedure is repeated with
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vortex filaments displaced 27/N radians. This is repeated

for the vortex filaments from all (N-1) other blades. The

rwi K
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geometry of the remaining blades must not be implicitly

entered.

Boundary Condition Vectoi

The boundary requirements for the propeller problem are

Dl atCrCas ¢ Pl DR
L . e e PR

the same as those for the wing, in that no flow is allowed to
pass through. the control points. The components of the bound-
ary condition vector for the propeller are more complex than

those of the wing boundary condition vector.

The right hand side of the B.L. eq. is the vector
{-Uy * @¢;}. In the case of the flat, untwisted wing, this
is constant for all panels. For the propeller, U, becomes
the local total velocity (Viot). equal to the vector sum of
flight .velocity and panel rotational velocity. The £light
direction is normal to the plane of rotation (Fig 6), there-

fore
Veor = [Ua2 + (rew)2]% (6)

This vector points in the direction of the wind seen by

the propeller blade,

B = tan‘l(g?;)

14




Each pan~l is oriented parallel to this local total velocity
vector at the zero local angle of attack condition. Angle of
attack distribution is a design parameter. This distribution
is a function of the twist distribution and flight conditions.
In the final construction of the boundary condition vec-
tor, the assigned angle of attack is multiplied by the magni-
tude of the local total velocity for each panel. The product
represents the component of local total velocity that acts
normal to the panel surface, opposite and equal -to the magni-
tude of the downwash induced at the control point by all of

-

the vortices in the flow field.

Determination of Performance

With A and the boundary condition vector, the distribu-
tion of circulation is calculated using a linear equation
solver.

Once the circulation distribution along the propeller
blade is found, the performance parameters are calculated.
Since viscous effects are not included in this method, the
lifting forces act normal to the panel. Lifting force is

found using the relationship
Ly = (p * by -v.m,r'jxrj)-ﬁ (7)

where p is density, bj is the length of the bound vortex of
panel j, and Vpor is the total panel velocity, combining

flight and rotational velocity of section j. At small angles

15




of attac., the local velocity parallel to the panel can be
approximated by the local total velocity. For small angles

of attack, lift is represented by

Ly =p * by lvfoT,jl . lrjl

The l1lift coefficient is fourd using the relationship

Lj (8)

Cyg, =
j ;s.p.v%OT,j.Aj

For the test cases, where VEOT is perpendicular to the bound

vortices, and the area (A) is well approximated by the pro-

A P

duct of panel épan and panel chord Cj. lift coefficient can

be calculated by the relationship

' Coy = i | (9)
s TOT,j *J

F This panel 1lift coefficient is normalized based on panel

[i dynamic pressure, a function of the local total velocity.

E? An exact solution requires dynamic pressure to be a function
% bf the component of local total velocity parallel to the

E panel. For small angles of attack, this component is accur-
#' . ately represented by the local total velocity.

E‘ Thrust and torque are calculated from lifting force.

The lift force acts normal to the surface of the blade at

the control point, resulting in force components which act

both in the direction of flight and in the direction of

16
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rotation (Fig 6). The component of force acting along the
flight path is thrust. The panel component of force acting
in the rotation direction, when multiplied by the distance
of that panel from the axis of rotation (the radius), is the
panel torque. Bending moment is found by multiplfing panel
radius by panel thrust and summing over all panels. Propeller
efficiency is found by dividing the total output power (equal
to the product of thrust and flightspeed) by the total input
power (the product of torgue and rotational velocity).
- e . ns= ;__: zw (10)

Pressure distribution on the blades is a function of
the panel lift and the panel area. Pressure is assumed to
be uniform over an entire panel, which is acceptable for
small panels. Section pressure is calculated by dividing
the panel lifting force by the wetted area of the panel.
Calculating this for every panel produces a distribution of
pressure over the entire blade.

This process is used to completely_define‘the perfor-
mance parameters of a propeller with thin, uncambered, twisted

"blades in an incompressible, inviscid flow field.

17
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IV. Approximations Used for

b. ' Numerical Implementation

This section discusses the approximations used in the

numerical integration of the analytical solution derived in
Appendix C.

An analytical solution for a line integration, such as
the integration in Appen&ix C, uses an infinite number of
infinitesmal line segments to represent a line. A numerical
solution uses a finite number of small line segments to
approximate the'analyﬁical solution. The size assigned to-
each line segment determines the level of accuracy of the
solution. 1Integrations using verf smail line segments pro-

i;; duce accurate solutions, but require more computation time
than those using larger line segments.

The size of the line segments of the wake filaments is
determined by the size of the differential angle (d6) multi-
plied by the distance from the axis of rotation to that
specific filament. For all of the test cases run in ihis
analysis, the differential angle (d6) is assigned a value of
2n/100 (Fig 5). Sevefal check runs show virtually no change

.in solution for smaller values of d8. Filament segments

e larger than this produce numerically inaccurate results, as

the assumption of small filament segments becomes increasingly

inappropriate. For all grid systems, particularly those with
. panels having aspect ratios significantly less than unity,
18
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the user must be sure that no filament passes through a con-
trol point, or the solution will diverge.

The use of the Biot-Savar. Law, as one of the inputs, a
vector with magnitude equal to the distance between the line
segment and control point of interest. 1In implementing a
numerical solution of the Biot-Savart Law with finite-length
iine segments, an approximation must be made for the point
location of a line segment. The point used in the model to
represent a line segment is the midpoint of the line segment.

The spanwise axial velocity profile is assumed to be
constant fér.ihé mbdel. In actual propeller flow fields, éhe
velocity near the hub is greater than the velocity across the
rest of the propeller face. Possible direct errors which may
result from neglecting this include a faulty angle of attack
distribution near the hub, -and incorrect dynamic pressures
near the hub.

The influence of a vortex filament segment on a control
point diminishes with the square of the distance between the
two. The first several segments, located on or near the blade,

usually have the most impact on the influence coefficient.

.After less than one-quarter turn of the wake, the effect of

the individual line segment is very small. Since the wake
position varies with advance ratio, the position at which the
remaining infinity of line segments becomes insignificant is
defined in terms of diameters downstream of the configuration.

The lift coefficient distribution for a case in which the wake

19




is truncated five (5) diameters downstream is the same as that
distribution for a case in which a wake is truncated ten dia-

meters downstream.

20




V. Outline of Program

This section discusses the layout of the program used to
implement this vortex lattice method.

The mesh generator takes the input geqmetry which de-
scribes the planform and divides it into an M x N grid, where
M is the number of spanwise strips aﬁd N is the number of
chordwise divisions. It also establishes the locations of
the bound vortex endpoints, and the locations of..the control
points.

The assembler oversees the construction of A, the influ-
ence coefficient matrix. The assémbler selects a control
point identifier and a horseshoe vortex identifier. The
driver subroutine recovers the control point coordinates and
the bound vortex endpoint coordinates from memory. A helix
generating routine is commanded by the driver to provide 4L
(incremental filament) endpoints, which are transferred to
the kernel routine. The kernel routine uses the control
point coordinates and the dL endpoints to calculate the in-

cremental velocity induced by the dL on the designated control

~point. These are velocities per unit circulation of the

horseshoe vortex. The driver sums the induced velocities as
the kernel routine calculates them. As the driver completes

one control point-horseshoe vortex pair, the summed induced

Jelocity per unit circulation value is stored in memory by

the assembler as a coefficient of A. This procedure is

21
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repeated until all values of A are calculated.

The boundary condition vector routine is the next rou-

)
'

tine called by the main routine. The flight and rotational
speeds are used to find the local total velocity at each
panel. These panel velocities are multiplied by the panel

angles of attack (an input parameter) to determine the com-

re— T,

ponents of local total velocity that act normal to the panel
at the control point. These values are calculated to repre-
sent the overall velocity induced at the control points,
since the sum of the normal local velocity and the velocity
induced muét'eqﬁal.zero to satisfy the boundary éondition.—
These values are stored in memory as the boundary condition
vector.
The IMSL routine LEQT1F retrieves the boundary condition

vector and the matrix A from memory, and solves the system of

equations {T'} = [A]-l {W)} for the values of circulation.

The blade performance routine accesses the flight condi-
tion and circulation values. These are used with the blade
geometry to calculate panel lifting force, and ultimately,
thrust and torque values for individual panels. The panel

. values of thrust and torque are summed to provide configura-

tion thrust and torque.

22
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L VI. Results

Initial Verification

To test the program, it is run with inputs which simu-

late a wing in a uniform flow. This is accomplished by set-
ting hub and tip radii very large, setting axial velocity
very small, and truncating the wake ét one-twelfth of a revo-
lution (Fig 7). The local total velocity along this config-
uration is virtually constant, and the wake filaments essen-
tially straight. The resulting values of circulation match
experimental and analytical values of circulation for thin-
wings (e.g., those of Ref 4). This shows that the mesh gen-
eration routine, the matrix assemﬁly routines, the boundary
condition routine, and the linear equation solving routine
all perform correctly. The performance routine is not tested
in this run, since torque and thrust are not relevant factors
for a wing. Manual calculations show that this routine works

correctly.

Description of Test Cases

Test cases are established which approximate the typ;cal
- operating regime of propellers. In the test cases, a base
blade configuration is used which has the following character-
istics.
Spanwise sections 10

Chordwise sections 1l

23




Chord 1l ft
j ‘ ' Propeller Diameter 16 ft

Hub Diameter ) 4.8 ft

These figures were chosen for ease of comparison with the
blade element method. The resulting blade is shown in Fig 8.

The blade element routine used divides the blade into seven

A JULEEL A SN RN
MRS . PIEE R LI

uneqﬁally spaced blade segments (skewed toward the tip),

therefore a lattice with more (ten) equally-spaced elements
is appropriate for comparison. No comparison cases were run

with more than one-chordwise section, since the blade element

3 method is incapable of analytically producing chordwise per-
b formance information.
P e A comparison is desired for a variety of flight condi-

tions and propeller configurations. These configurations are

run, using both the blade element and vortex lattice methods,
to represent changes in the number of blades, the advance ratio,
and the angle of attack distribution, on each blade.

Two and three bladed propellers are analyzed in the test
cases for two reasons. First, blade element theory is well
suited to analyzing propellers of this size. Furthermore,
the amount of computer time required for the vortex lattice
method is proportional to the square of the number of blades
in a configuration. Two and three blades were chosen in the
interest of economy, and in the interest of maintaining a

good level of confidence in the blade element theory.
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The advance ratio is fixed at either 1 or 2 for all of
the cases. Advance ratio (J) is a function of flight speed
(U=) and rotational speed (n) ..r a propeller:; for the cases
run, rotational speed is fixed at 1000 rpm, and flight speed
is varied to produce the desired advance ratio. These advance
ratios bracket typical operating regimes for propeller air-
craft in a cruise mode. -

Conventional propeller blades have a relatively flat,
parabolic angle of attack distribution, with the highest strip
design angle of attack located around mid-span. Two distri-
butions of-aﬁélé o% attack are used in this analysis. The‘
first distribution assigné all strips a five (5) degree attack.
angle to the relative wind. The second distribution assigns
each strip a spanwise-varying guadratic angle of attack dis-
tribution, with the angle of attack equal to five degrees at
mid-span, and two degrees at the hub and tip.

Table 1 shows the input conditions for all of the cases.

Discussion of Results

As previously mentioned, all of the test cases are run
at advance ratios of 1 or 2. For all of the cases, the effect
"of the wake becomes negligible after five or less revolutions,
régardless of the number of blades. The results of varying
the wake truncation point is shown in Table 2. The cases
shown in Table 2 are lift coefficients for a single bladed

propeller run with the conditions given for Case 1. The lift

25

et et T B T . . . o . P . . . . . N -
““““““ Sumadbuindinh P IC  LIy . datndiuiediandesing H & “‘M




T e

R 1 ¢

''''''''''''''

TABLE 1

Case Descriptions

Case Number of Advance alpha
Number Blades Ratio Distribution
1l 2 1 Constant
2 3 1 Constant
3 2 - 2 Constant
4 3 2 Constant
) 2 1l ‘ Quadratic
6 3 1 Quadratic
7 S -2 2 Quédratic
8 3 2 Quadratic

coefficients converge to the fourth decimal place after four

revolutions. The tip strips are marginally less sensitive to
wake truncation than the strips near the hub. The hub strips
are positioned closest to the axis of propeller rotation, and
are the strips most sensitive to the total array of shed wake
filaments. In the hub position, the difference in lift co-

efficient between the single rotation and five-rotation case

- is less than 3%.

The overall comparisons of the blade element cases to
those of the vortex lattice method are shown in Table 3.
Graphic displays of the comparison of spanwise distribution

of 1lift coefficients are shown in Figure 9. Fig 10 shows
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the strip lift coefficient distribution for a Case 1 run

with 10 strips and 5 chordwise sections. Fig 11 shows the
strip lift coefficient distribucion for a Case 1 run with 10
strips and 10 chordwise sections. Comparison with Fig 9a
shows that the strip lift coefficient distribution for a 10 x

l case is the same as that for a 10 x 10 case. The conver-

gence of the solution based on number of chordwise sections
is assumed for all other test cases. A spanwise and chord-
wise lift distribution calculated for Case 1 with 10 chord-

wise sections and 10 spanwise strips is shown in Figures 12.

- . . - - -

TABLE 2

Effect of Varying Wake Truncation on Section
Lift Coefficient for a Single Bladed Propeller

LIFT COEFFICIENT COMPARISON

RADIAL FRACTION

#REV .3341 .4024 .4707 .5390 .6073 .6756 .7439 .8122 .8805 .9488
.3281 .4091 .4357 .4415 .4370 .4253 .4066 .3780 .3320 .2465
.3260 .4067 .4333 .4392 .4349 .4235 .4050 .3766 .3308 .2457

1l
2
3 .3255 .4061 .4328 .4387 .4344 .4230 .4046 .3763 .3305 .2455
4 .3254 .4059 .4326 .4385 .4342 .4229 .4044 .3761 .3304 .2454
5

.3253 .4059 .4325 .4385 .4342 .4228 .4044 .3761 .3303 .2454

Table 3 reveals some interesting trends. The vortex lat-
tice method shows a much greater sensitivity to the presence

of multiple blades in the flow field than the blade element
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method. This sensitivity is partially due to the wake model,
which does not alter the wake shape to reflect an increase in
flow velocity through the propc.ler face. With this unaltered
wake positioned unrealistically close to the propeller, the
inverse-squared distance term of the Biot-Savart Law causes

inaccuracies in the results.

TABLE 3

Comparison of Overall Performance - VLM vs BEM

VORTEX - LATTICE TEST RUNS

CASE THRUST POWER INPUT POWER  PERCENT
NUMBER COEFFICIENT COEFFICIENT (SHP) EFFICIENCY
1l .02580 .03231 501.9 80.0
2 .02936 .03674 570.8 80.0
3 .03062 .07335 1139.4 83.5
4 .03489 .08356 1298.0 » 83.5
5 .01975 .02357 366.1 83.9
6 .02255 .02691 418.1 83.9
7 .02374 .05471 849.9 86.7
8 .07140 .06255 971.7 86.7

BLADE - ELEMENT COMPARISON CASES

CASE THRUST POWER INPUT POWER  PERCENT
NUMBER COEFFICIENT COEFFICIENT (SHP) EFFICIENCY
1 .03268 .03594 558.2 90.9
2 .04751 .05159 801.4 92.1
3 .04096 .08719 1354.5 94.0
4 .05991 12745 1979.8 94.0
5 .02546 .02623 407.4 97.1
6 .03561 .03806 591.2 93.6
7 .03106 .06512 1011.6 95.4
8 .04538 .09541 1482.1 95.1
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The blade element method predicts total power input 10
to 20 percent higher than the vortex lattice method for the
two-bladed cases. The three bladed cases show differences in
input power of as much as 60 percent. This can be attributed
to the wake position error as well, since the inaccurately
close wake acts to decrease both thrust and torque of a pro-
peller. -

One of the main problems in using the blade element
method for the inviscid, incompressible, thin non-cambered
propeller is that all of the tabulated data in the supporting
document ihciﬁdé ;il of these effects to some degree. There-
fore, the accuracy in using the blade element method while
attempting to suppress these effects is questionable, as can
be seen.in some of the ideal efficiencies in Table 3.

Comparison of the efficiencies of vortex léttice method
with those of blade element theory show a significant varia-
tion. The blade element method predicts efficiencies ten or
more percentage points higher than those predicted by the
vortex lattice method. 7Two factors cause this deviation; the
artificial removal of compressibility effects from blade ele-

- ment theory, and the inaccurate positioning of the wake for
vortex lattice method. A multiplying factor which includes
the effects of compressibility is indeterminate at Mach num-
bers less than 0.4. The incompressible (M=0) factor is

extrapolated from a graph used in the blade element report.
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Availability of the compressibility factor for low mach num-
bers and a wake location routine would help alleviate this
discrepancy. 1In Table 3, one of the blade element theory

case efficiencies was calculated to be 97 percent. This fig-

ure is optimistic and can be attributed to the fairly coarse
integration approximations requi;ed to calculate total thrust
and torque figures, as well as the inability of the blade

:. element method to aécurately model non-typical propeller flow
E? conditions (thin flat blade, inviscid incompressible flow).

Y Comparison of the lift coefficients of each case show

t mixed results. For all cases, the vortex lattice method pre-
i ' dicts lower lift coefficients than blade element theory. The

overall shapes of the lift coefficient-versus-radius curves

were very similar, the greatest disagreement being with the
distribution near the hub. This is to be expected, as the
actual hub has not been modeled in this application of the

vortex lattice procedure.

Error Analysis

The first run of the program simulated a wing, as de-
scribed earlier. The results agreed very well with those
:'using conventional vortex lattice methods for wings, as well
as with experimental data (Ref 4). Some of the disagreement
of trial case results with those using known methods for
multiple-bladed configurations are attributable to changes

in the vortex lattice method associated with the rotating of
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the flow field. These problems can be broken down into three
areas:
l. Oversimplification of the wake model

2. Making the influence coefficient matrix
independent of angle of attack

3. The hub model
The error analysis section addresses each of these
problems. ]
The wake is modelled as a rigid helix with constznt helix
angle B, equal to tan‘l(Uo/Rm). In an actual propeller flow

field, the- momentum theory (Appendix E) indicates that the.

wake extends axially and constricts radially as it moves
downstream of the propeller (Fig 13). The helix angle must
change with axial position to correctly model the wake.

The vortex lattice model for a wing does not require an
accurate wake model because the effect of the wake is negli-
gible at those points where the wake position is very in-
accurate (far downstream). The influence of the wake of the
propeller does not decay as rapidly, but rather has a period-
ically decaying influence on the blade. The non-axially-
extended wake model positions the shed vortex filament seg-
l'ments too close to the propeller, artificially inducing an
unrealistically high level of downwash on the blade. When a
multiple-bladed configuration is modeled, this error is even
more pronounced, as shown by the differences in power figures.

The influence coefficient matrix is independent of angle
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of attack. This assumption is appropriate for the planar
wing at small angles of attack, but is inadequate for the
propeller. In a flow field which includes a very dense
assembly of blades and rotating wakes, the accurate locations
of all control points and bound vortices are critical to
finding accurate results. A model with many blades, low
aspect ratios, and low advance ratios at high angle of attack
would be very sensitive to wake position. The inverse-
squared distance term of the Biot-Savart Law forces the user

to input accurate blade positions in order to produce accurate

- - - -
-

results.

The perfdrmance trends near the hub show significant
deviation from those of the comparison method. Two factors
cause this discrepancy. The first is the léck of a model of
a hub, which is a solid axisymmetrical body on the axis of
rotation. The strip closest to the axis of rotation in the
configuration is effectively modelled as a tip section due
to the absence of the hub model, therefore the circulation
is low. A model is needed which analytically places a solid

body on the axis of rotation to eliminate this tip effect.

. The second factor is the assumption of a constant axial vel-

ocity distribution across the propeller face. The hub acts
as a flow constrictor, causing the flow about the hub to
accelerate. The hub generates an increase in thrust and
torque from the hub strip that is not represented in the

current model.
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VII. Conclusions and Recommendations

The test cases show that the vortex lattice method pre-
dicts the lift coefficient trends reasonably well. Several
improvements that would enhance the accuracy of the method
include the following:

1. Modify the modelling of the wake to account for exten-
sion due to the increase‘in the axial velocity of the free-
stream, as demonstrated by the momentum theory..”This will
force the solution to be iterative, but also attenuate the
extreme sensitivity of the routine to the presence of multiple
blades in the flow field. Since induced velocity is a func-
tion of the inverse-squared distance from control point to
wake filament segment, small changes in the wake position

produce very significant changes in lift coefficient.

2. Include camber for the modelling of realistic plan-

. forms in order to model actual propellers. Doing this would

allow for comparisons with existing propellers with known
performance characteristics.

3. Modify the lattice generator to include arbitrary
geometry. This modification would perform a series of bi-
Quadratic coordinate transformations on an input geometry,
and establish a complete lattice configuration compatible
with the rest of the program. This could include the modifi-
cation suggested in 2.

4. 1Include a hub model. Placement of an analytical

a3




solid bocy on the rotational axis would correct the distri-
bution of velocity on the propéller face, and moderate the
dip in the lift coefficient near the hub. This solid body
could be represented by a seriés of ring vortices or sources
centered about the axis of rotation.

5. Add a compressibility correction that accounts for
high but subsonic tip mach numbers. A Prandtl-Glauert trans-
formation could be used.

There is a significant amount of room for growth with
this method. 1Initial results indicate that even the coarse
model used-pfbdﬁcéé impressive correlation with blade element
theory especially for blade circu;ation distribution. The
method's ability to produce chordwise pressure distributions
is also valuable as an analysis tool. It is presumed that
even greater accuracy is attainable, once these improvements

have been implemented.
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Appendix A - Construction of the Lattice

In a vortex-latticé methnd, a lifting surface is divided
into a grid for analytical purposes. The spanwise divisions
are made parallel to streamlines, coincidental with the
trailing vortex filaments. Chordwise divisions are made
along constant-percent-chord lines. For the wing, this pro-
duces a series of parallélogram-shaped lifting panels whose
sides are straight (Fig 14). Horseshoe vortices are super-
imposed on these lifting surfaces. Each horseshoe is com-
posed of three vortex filament pieces. Incompressible, thin
airfoil theory indicates that the aerodynamic center of a
surface is at the quarter-chord. For this reason, the finite
(bound) vortex is placed along the panel quarter-chord. This
bound vortex has endpoints located on the panel edges. The
two trailing vortices comprise the rest of the horseshoe
vortex. Each of these trailing vortices has an endpoint at
the bound vortex, and trails off along a streamline to in-
finity. The three pieces form a horseshoe vortex. Note that
the actual trailing vortex filaments are coincident with the
panel edges, but are shown displaced for clarity in the fig-
" ‘ures. )

Each horseshoe vortex is associated with one lifting
panel. In order to model the entire flow field, the horse-
shoe vortices from all panels are assembled, thus forming a

vortex lattice (Fig 14). The vortex lattice method
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mathemat: cally models this lattice.

The circulation at the tip of a three-dimensional wing

must go to zero. A large number of spanwise strips is re-

quired to reasonably approximate this condition, using the
mesh described above. A method which provides a more accurate
solution to the problem (given the same number of spanwise
divisions) is implemented. Hough (Ref 2) indicates that the
tip should be inset by one quarter of a panel span. This

has been shown to more accurately represent the absence of
lift at the tip (Ref 3).

In this method, a given configuration is initially divi-
ded into a grid in the manner prev;ously described. The grid
is assumed to have N spanwise divisions and an overall span
of length B (Fig 14). The panel span, b, is equal to B/N.
The modification is implemented by deéreasing the size of b

to b’, such that
B - (N*b”) = ,25+b"°

which satisfies the quarter-tip ihset'requirement. Fig 3
shows the resulting configuration. Note that Ab” is equal to

)

b°/4, as prescribed by Hough. Solving for b“, then,

b’ = —53
N+.2

Hough shows that convergence to an accurate solution is found
with significantly fewer strips than the vortex lattice solu-

tion not using the gquarter-tip inset.
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"chord (Fig 14). This filament induces a velocity v, where

Eacn panel has a point at which the flow tangency
boundary condition is satisfied. This is the control point,
located at the panel three-quarter chord point, centered
between the trailing vortices. Selection of the three-
quarter chord point is justified in the following discussion
from Ref 4.

The bound vortex filament is placed at the panel quarter

= T . .
vV = Znr

at the control point of the panel, which is a distance r from
the bound vortex. In order for the flow to be parallel to
the wing at the control point, the freestream flow must be
deflected through the angle of attack. This angle of attack

can be approximately described by

a & sing = =

For a flat plate at small angle of attack, thin airfoil
theory shows that Cg, = 27. From this, Cp = 271a, and panel
lift is

2 - L] ®
£'=,kaT°T-C 2t = p VTOT T

Combining these relationships

2 T
'ﬂ'pv oo = pov oT
TOT anVTOT TOT
Then, solving for r,
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r =C/2

j . Thus, the three-quarter chord point is an appropriate loca-
tion for the control point. 7  .s position is typically used
in vortex lattice applications.

i For the propeller case, séreamlines are not rectilinear,
but helical. To model the propeller in a manner consistent
with a vortex lattice method the spanwise divisions must

: follow streamlines. Using this framework, the spanwise

divisions are made such that each division line lies along

a line of constant distance from the axis of propeller rota-

3

T‘\ tion (Fig 15). Chordwise divisions are made along lines of

2 constant-percent chord, similar to the method applied to the

wing analysis.

Control points are located at the three-quarter-chord
lines, just as in the case of the wing. Each control point
is placed along the mean radius of its panel in order to be
properly centered between the filament legs.

Tip inset is established in a manner similar to that of
the wing. In the analysis, the wing span B is replaced by
the distance from the propeller center of rotation to the

Ctip.

The entire lattice with quarter panel tip inset and
trailing vortices for the propeller is shown in Fig 16. This
configuration is for a propeller using three spanwise djivi-

sions and two chordwise divisions.
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® . Appendix B - The Planar Wing Case

In this appendix, the procedure for calculating the lift
on a wing in a uniform flow field will be described. The
;3 discussion follows that in Ref 4.
hl The velocity induced at a point due to a vortex filament
segment of strength I'y and length df is described by the Biot-
Savart law, -
av = PngdiiF!

= - ' B-1
4n|r|3

'] FYCE W % L TR S N PR

where r is_the vector from the filament to the point. Refer-

o

3 ring to Fig 18a, the magnitude of the induced velocity is
3
L
N T 3 :
- -, 4rr
-

For the wing, the velocity is induced by a horseshoe vortex

composed of three straight filament segments. The effect of

each segment is best calculated separately. The induced
velocity is found for an arbitrary line segment AB, with
vorticity vector directed from A to B. Let C be an arbitrary
point in space whose normal distance to line AB is rp. From

geometry,

r r
r = EIEBE , dg = -——g— ae B-3
sin“e

Integrating to find the velocity magnitude,

r r
T /%2 sin0de = ;B-(cose
" L) 6 l p

V=

1-cosez) B-4
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For the nfinite vortex filament, el goes to 0, and 62 goes

to T, so

Tn

2 B-5
'ﬂ'rp

VvV =

which is the two-dimensional solution for induced velocity.
Using the vector designations of AB, AC, and BC as shown in

Fig 18a,

r = ]rlxrzl cosel = rO'rl cosh, = ro-r2 B-6

The direction of the induced velocity is described by the

unit vector

T, xr
I?l_x_le B-7
1l 2
which, when substituted into Eq B-4 produces
- ) = - 7 oy
=g 1 X, [ry (L - I2)] B-8
Irl xr, r, r,

This is the general equation for the induced velocity due to
a line vortex in the vortex lattice method. The following
description shows how this can be applied to a horseshoe
_vortex.

Equation B-8 is used to find the velocity induced at a
point in space by the horseshoe vortex shown in Fig 18b.
Segment AB is the bound vortex, coinciding wiﬁh the panel
quarter chord. The traiiing vortices are parallel to the

x - axis. The resultant induced velocity vector is found by
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summing -he effects of each vortex filament.

For the bound vortex, segment AB,

ro =AB = (X, Xy )i+ (v, -y, )3 + (2,,-2) )k

"
[

L = (=X 0T+ (y-y, )T + (2-2, )k
Ty = (X-Xpp)1 + (y-yp,)3 *+ (2-Z5)k

Using Eq B-8 to calculate the velocity induced at some point

C(x,y.z) by vortex filament AB, (see Fig 18a),

- - Vap = I¢ {FAC.IAB}{F c AB} B-9

where
Faclas =|%_xx'§—§|7
= {[(y-yy,) (2-2, ) - (y-¥,,) (2-25) 14
~[ (X=X ) (2-257) - (XX 1) (2-23) 1]
+[ (X=X, ) (y=yo) - (X-X,) (y-¥; ) 1K}/
{Uy-y, ) (2-2, ) - (y-y,,) (2-2; )12

2
+L (X=X ) (22, ) - (X=X, ) (2-25 )]

+[(x—x1n)(y-y2n)—(X-x2n)(Y-¥3n)12}

and

{Fac2upt = (rg »

S
o
I




- {[(XZn'xln)(x-xln)+(y2n'yln)(y-y3n)+(22n'z3n)(Z'Zln)]/
[(X=Xp) 2+ (y-y; ) 2+ (22, ) %1%
- (XZn'xln) (X-in)"'(yzn-yln) (Y-YZn)+(22n-Zln) (Z-ZZn) 1/

[(x-X,) 2+ (y-y,,) 2+ (2-2, ) 21%)

To find the velociti induced by the trailing vortex that
extends from A, the velocity induced by the collinear, finite-
length filament AD is first calculated. Since ?b is in the

direction of the vorticity vector,

Ty DA = (Xln-x3n)i

E& (x-x3n)I + (y-yln)T + (z-zln)i

as shown in Fig 13b. Thus, the induced velocity is

rn
Vap = Tr (Faclap) {Fac2ap!

where _ -
(2-2,.)j + (y,_-y)k
iln ln
Factan? = 2%y 92 . %)
“%1n Y1n7y 3an™"1n
wand
Xy, - X
{Fac2ap} = X3pX1p) { —=0

[(X-X, ) “+(y-y, ) “+(2-2, ) 1%

X - Xln

] }
[(x-xln)24(y-y1n)2+(z-zln)2]*
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Letting «, go to infinity, the first term of {F, .2, .} goes

3 ACTAD
to 1. Therefore, the velocity induced by the vortex fila-

ment which extends from A to infinity parallel to the x axis

is given by
- r 3 )& _ '
V= zg (Z+z;n)d+(yln y)k - X Afln
(242 )2+( 2 2 2.%
in Y1,-Y) {(x-x,,) +(y-y; ) +(2-2, )7}

B B-10

Similarly, the velocity induced by the vortex filament

that extends from B to infinity parallel to the x axis is

VB.. - ;_ra‘ (z-z—gn)a+ (Yon-VR] [ & X - X :
" 2oz, ) 2 )2 { (X=X, ) 2+( )24+ (22, _)2}%
~%2n Yon~Y ~2n Y=Yon =%2n

B-11

The total velocity at an arbitrary point (x,y,z) due to
a horseshoe vortex representing a portion of a lifting sur-
face (panel) is the sum of the components given in Eqs B-9 to
B-11. The point (x,y.z) is designated the control point of
panel m, with coordinates (xm,ym.zm). The velocity at this
'mth control point due to the horseshoe vortex representing

the nth panel is designated vh,n. From Eqs B-9 through B-1ll,

Va.n = Smun n B-12

where Eﬁ n is the influence coefficient which depends strictly

on the relative geometries of the nth horseshoe vortex and

the mth control point. Since the governing equation is
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linear, the velocities induced by the 2N vortices are added
together to obtain an expression for the total induced velo-

city at the mth control point;:

- _ 28 _
v, = nz=1 Co.n Tn B-13

There exists one such equation for each control point, or a
total of 2N equations.

Using the above development, it is possible to £ind the
velocity induced at any point in space, given tﬂ; geometry
of the problem and_the circulation strengths of all of the
vortices. These strengths are not initially known, however.
To find these strengths, it is necessary to establish a boun-
dary condition. The boundary condition is that the surface
must be a stream surface, hence the flow is parallel to the
surface at every control point (the control poiﬁt locc =ion
described in Appendix A). To satisfy this condition, the
total induced velocity at a given control point must be can-
celled by the component of freestream velocity that is normal
to the surface. Referring to Fig 4, the tangency condition

for no dihedral yields
-umsiné + whcosa + U sin (a-8) = 0 . B-14

where § is the slope of the mean camber line at the control
point, or

) 1 g
6§ = tan ax’'m
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For wingc where the slope of the mean camber line is small
and which are at small angles of attack, this equation can

be approximated by

-u, s + Vo + Up(a-6) =0 B-15

For the case of the flat plate, this further reduces to

ﬁ These approximations are consistent with the assumptions of

linearized theory. The unknown circulation strengths required

to satisfy these boundary conditions are found by solving the

T

system of iiﬁéaf e&uations developed earlier in this appehéix.
Egs B-9 through B-1l5 are those for a VLM where the trail-

ing vortices are parallel to the x axis. These equations can

{

be applied to a relatively simple geometry, a planar wing
(one that lies in the x-y plane). For a planar wing, Z1n =
Zon = 0 for all of the bound vortices. Furthermore, z, = 0
for all of the control points. Thus, for the planar wing:

r ~
— r
v, =-2 k

AB 4w | (X =X, )y =¥, )-(X X, ) (¥ -¥;,) ]

PRt B 2 LIS ARERSR RO Wi bt S

-(x2n'x1n)(xm‘flp)+(y2n'yln)(Ym'yln)
- ( (xm-xln) 2+ (Ym-yln) ) 2

O A2 Sl S

- lfza:flallfmzizn’*‘an‘Yln"Ym:Z;gl]
2 2, %
(X -Xopn) "+ (¥ ~¥5,) )

O JOBLAS SR NG
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~ - N
k xm xln

V, =3 —— |1+
Aw AT ¥in~VYn [ (X=X ) 24+ (v -y ) D)3

v =n_k [.1-+ “n ~ ¥an |
B 4m - 2
@ Yon ¥ ((Xy~X2p) +(Ym-an)2)%J B-16

|
~
o]

Note that, for the planar wing, all three components of the
vortex representing the nth panel induce a velocity at the
control point of the mth panel which is in the z direction
(i.e., a downwash). Therefore, we can simplify Egq B-16 by
combining the components into one expression: B

-_ 1 A P
w ) T{Ix xln) (y Y2n) (xm'x2r? (Ym'yln)

[(x2n X1n) ¥p xln)*‘yzn Yin) Ypn-¥op)
(%X ) 2+ =y, ) D)%

Xan*15) Ky x2n)+(y2n Yln);y =Yon)1
((Xm-xzn) +(ym-y2n) )

1 X0 = X1 1

¥Y1n¥m [ (=X; ) 2+ (v -y D)%)

_ 1 [1 + Xn = Xon g. }
Yon-Y. % 12 p)
2n"'m ((Xp=Xo,) "+ (Y -y, )7) %] B-17

Summing the contributions of all the vortices to the downwash

at the control point of the mth panel:

2N

Wm = n}_;l wm‘n B-18
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The :.angency conditions as defined by Eas B-14 and B-15
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will now be applied. Since the wing is planar, (dz/dx) = 0
everywhere and there is no dihedral. The component of the
freestream velocity perpendicular to the wing is U, sin a

at any point on the wing. Thus, the resultant flow will be
tangent to the wing if the total vortex-induced downwash at
the control point of the mth panel which is calculated using
Eq B-18, balances the normal component of the freestream
velocity: -

"h + U, sina = (o} : B-19

-

For small angles of attack,

éﬁé The following example shows how a VLM is used to find

the circulation and 1ift about a swept, planar wing (from

Ref 4).
The wing to be analyzed has an aspect ratio of five (5),

; a taper ratio of unity, and an uncambered panel (Fig 14).
- Since the taper ratio is unity, the leading edge, the quarter-
-
= chord line, the three-quarter-chord line, and the trailing
™
N edge all have the same sweep, 45 degrees. Since
- - e = p
_ AR = 5 = B“/S
:T“
F and since for a swept, untapered wing
F S=Bc¢
E - it is clear that B = 5 ¢. Using this relation, it is possible
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to calcu”ate all of the necessary coordinates in terms of
the parameter B. Therefore, the solution does not require
knowledge of the physical dimensions of the configuration.
The flow field under consideration is symmetric with
respect to the x-z plane (i.e., there is no yaw). Thus, the
lift force acting at a point on the starboard wing (+y) is
equal to that at the corresponding point on the port wing
(-y). Because of symmetry, we need only to solve for the
strengths of the vortices of the starboard wing... Furthermore,
we need to apply the tangency condition only at the control
points of the starboard wing. However, we must remember to
include the contributions of the horseshoe vortices of the
port wing to the velocities.induced at control points of the
starboard wing. Thus, for this planar symmetric flow, Eq

B-18 becomes

N N

wm = I w n + I Yon \
n=1 Mg p3 p _

where the symbols s and p represent the starboard and port
wings, respectively.

The planform of the starboard wing is divided into four

~ panels, each panel extending from the leading edge to the

trailing edge. As before, the bound portion of each horse-
shoe vortex coincides with the quarter-chord line of its
panel and the trailing vortices are in the plane of the wing,
parallel to the x axis. The control points are designated
by the circles in Fig 15. Recall that (xm,ym,O) are the
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coordi.ates of a given control point and that (xl 0)

n'vln'
and (x2n,v2n,0) are the coordinates of the ends of the bound

vortex filament AB.
Using Eq B-17 to calculate the downwash velocity at the

control point (CP) of panel 1 induced by the horseshoe vortex

of panel 1 of the starboard wing:

w r1 { - 1
1,1 = -—= — = —
*“*s = 47 | (.1625B) (-.0625B) - (.0375B) (.0625B)
[ .125B) (.1625B) + (.125B) (.0625B
((.1625B) 2+ (.0625B) %)

_ .125B) (.0375B) + (.125B) (.0625B) ]
((.0375B)2 + (-.0625B)2)%

. L

. 1 L+ .1625B
-.0625B ! ((‘15253)2+(.0625B)2)%-
2 L. .0375B § }
.0625B | ((.03753)2+(.06258)2)%*

Tl (-16.353 - 30.934 - 24.232)
41B

Note that, as one would expect, each of the vortex elements
induces a negative (downward) component of velocity at the
control point. In addition, the velocity induced by the
vortex trailing from A to » is greatest in magnitude. Adding

the components together, we find

Il
"1.13 = 775 (-71.5187)
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The downwash velocity at the CP of panel no. 1 (of the
starboard wing) induced by the horseshoe vortex of panel no.

1l of the port wing is:

W, = I;.{ _ _1 _
o 4q | (.0375B) (.0625B)-(.1625B) (.1875B)

[ —.1250B) (.0375B)+(.1250B) (.1875B
((.0375B)%+(.18758) %)%

-.1250B) (.1625B)+ (.1250B) (.0625B ]
((.1625B) %+ (.0625B) 2)%

) 1 L .03758 ]
- - -(-:18758) | ((‘03753)2 + (.18753)2)2.
i 1 rL .1625B ”}
T{-.06258B) i ((.1625B) % + (.06258)2)%_
~ = 1 {18.515}
41B :

Evaluating all of the various components (or influence
coefficients), we f£ind that at control point 1l:
I !
W = I8 [(-71.5187rl+11.2933r2+1.o757r3+.3775r4)s
+ (;8.51sor1+2.oso4r2+.5887r3+.2659r4)p]
At CP 2: '
S
W2 = 4B [(20.21741‘1—71.51871"2+11.2933I‘3+l.0757r4)s

+ (3.6144P1+l.1742P2+.4903P3+.2503P4)p]

At CP 3:
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-
Wy = Zpp [(3.87927)+20.2174T,-71.5187T3+11.2933T,)

+ (1.5480rl+.7227r2+,3776r3+.2179r4)p]

At CP 4:

A
W, = 705 [(1.6334r

4 +3.87921‘2+20.2174!'3-71.51871"4)s

1

+ (.8609T.+.4834T_+.2895T

1 2 3+.1836I‘4)p]

Since it is a planar wing wiih no dihedral, the no-flow con-

dition of Eq B-20 requires that

Thus,

-53.00371"l + 13.3437P2 + 1.6644r3 + .64341"4 = ~47mBU_a

23.83181'1 - 70.3445?2 + 11.7836T = 47mBU_a

3

+ 1.3269F4

5.4272r

+ 20.9401T, - 71.1411T, + 11.5112T

2 3 4 -4nBU“a

1

2.4943Tr, + 4.36261'2 + 20.5069I‘3 - 71.3351T

1 -4ﬂBU¢a

4
Solving for rl,rz,r3, and r4, we find that

I, = .02728 - (47BU_a)
I, = .02869 - (4nBU_a)
Ty = .02841 - (47TBUa)
T, = .02490 - (47BU_a)

Having determined the strength of each of the vortices

by satisfying the boundary conditions that the flow is tangent
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-
to the sur-face at each of the control points, the 1lift of

ﬁs o the wing may be calculated. Since the panels extend from
the leading edge to the trailing edge, the lift acting on
the nth panel is

s- ¢n =p ¢« U, *In

Ef which is also the lift per unit span. Since the flow is

T symmetric, the total lift for the wing is

L

B .5B

. L =2 fo p » Uy, « T(y)dy

or, in terms of the finite-element panels,

4
L = 2pU¢ z I'nAyn
n=1l

- Since Ay = 0.125B for each panel,

L

2pU“4ﬂBUQa(.02728+.02859+.02841+.02490P.1258

= opu_%b2ra (.10928)

To calculate the lift coefficient, recall that A = bec

and b = 5 ¢ for this wing. Therefore,

e = _

Furthermore,

- cr, = dSL = .05992/degree

L @

o

- The theoretical lift curve generated using VLM is com-

ti pared in Fig 20 with experimental results reported in Ref 5.
b -

;! ‘ The experimentally-determined values of the lift coefficient
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are for < wing of constant chord and of constant section,

which is swept 45 degrees and which has an aspect ratio of

five. The theoretical lift coefficients are in good agree-

ment with the experimental values.
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Appendix C - Analytical Wake Integration

. The Biot-Savart Law is used to find the velocity in-
duced by a vortex filament segment at a point in space.
This calculation is performed for every vortex filament seg-
ment in a horseshoe vortex to find the velocity due to the
entire horseshoe vortex. In this appendix, the integration
for the case of a single-semi-infinite filament segment of
a helical wake is developed.

Following reference 6, let P be a point on a blade sur-

face. Let the location of P be defined in the reference
frame of the rotating disk, as (rp, ep, zp). Assume P emits
a helical vortex filament defined by

X = ] = sine , Z = -k6
_rpcos e Y rp

This filament will induce a velocity at a point Q. Let the
dinat R ’ .

coordinates of Q be (rQ GQ zQ)
The velocity induced at Q by a segment df of the helical

filament emitted by P is

= _TIpasx (r,-r)
GVQoP-MrT(—?TET%——
Q

: where T is a vector from the origin to EI, and ;6 is a vector
from the origin to Q. 4% is an infinitesmal segment of the
helical vortex filament in the direction of the vorticity

vector. Therefore,
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at = -rpsinedef'+ rpcosedef'- kdek

Q XQi + ij + 2

Qk

r =Xi+yJj+2zk-= T + rsingj -
r p ypj Zpk rcosb rsingj - kek

Inserting these relationships into the expression of

the Biot-Savart Law,

v - -ILE - 1 T - ) -'._ 3, - hrad - —-— -
GVQ'p 4y L-rsin6déi+rcos6ds] kdek]x[(xQ x)1+(ZQAY)J+(ZQ)k]

[xg0)2 + (yy1)? + (2702132

Separating these into i, j, and k components,

8V = %% {-r(yQ-y)sin6d9§4rZ sinedefLr(xQ—x)cosedef

Q.,p Q
+ercosadeELk(x;-X)deE4kde(y;-y)I}

2 2 2:3/2
[(xQ-x) + (yQ-y) + 2, ]

Finally,
Vv = IR (T - T _ ;
GVQ'p e {i[k(YQ Y)+r(ZQ)cose]de+j[ k(xQ X)+r2081n6]de

+E[—r(yQ—y)sine-r(x -X)cos6]de}

2 2 2
[xg-x)2 + (yg-1)? + (29?132

This expression represents the velocity induced at

- point P due to infinitesmal vortex filament Q. The velocity

at Q induced by an entire horseshoe vortex P is
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- - = Ip 0 [T _ , Tro _
s vQ,p o f-“{l[k(yQ r51n6)+r(ZQ+k6)coselde+J[ k(XQ rcosf)

- +r—(EQ+ke) sin6)do+k[~r (y,-rsind)siné-r (XQ-rcose )cos01de}

[ (x --rcose)2 + (y --rsine)2 + (2 +ke)2]3/2
-

F This is integrable if x and y are zero. For all other
“‘ cases, a numerical solution to the integration is required.

- - -
l .

-—
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Appendix D - Blade Element Method

] The blade element method uses airfoil data to predict
the performance of a propeller configuration.

Lift and drag coefficients are obtained by assuming

that the induced flow past a tﬂade element is the same as
past a wing of aspect ratio 6 (Ref 7). The forces on the
blade element of width dr and chord c are ‘shown in Fig 6.

The thrust due to the elemenﬁ is equal to the sum of
the lift and drag forces perpendicular to the pi;ne of rota-
tion. From Fig.6,.

dT = dL cos ¢ - AD sin ¢

3 "V%o'r c dr (CL cos ¢ - Cp sin ¢)

Similarly, the torque due to the element is equal to
the sum of the lift and drag forces in the plane of rotation

multiplied by the mean element radius, or
dQ = r(dL sin ¢ + @D cos ¢)

= gpv.f,o,r crdr (CL sin ¢ + Cp cos ¢)

Since efficiency is defined as output (thrust) power
~divided by input (torque) power,

_ Ug 4T
N = 27n dQ

U &cosd»-cnsincp

2mnr cL sin ¢ + cD cos ¢
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The values of 4T and 4AQ must be found at every element

in order to find total thrust (T), total torque (Q), and
hence input power (P) for the configuration. These quanti-

ties are found using the equations

) o
_ _ TIP 2
T = [BAT = BS %0 Viop

. c(CLcos¢ - CDsin¢)dr
HUB

r
P 2
Bf TTF 30 Veor

Q = [fBAQ C(CLsin¢ + C_ cos¢)r dar

D
Tuus

The integrations are normally performed graphically.

In Re% é; éo&ber presents a methodology for using the‘
blade element theory to calculate blade performance. For
the cases analyzed, many of the parameters used by Cooper
are not applied. In an effort to simplify the calculations,
a modified version of his worksheet is used.

The worksheet utilizes user inputs which require some
knowledge of the airfoil/propeller that is being analyzed.
As an example, the zero-angle-of-attack lift coefficient
]cli) is an input parameter (this is zero for the flat

plate). The input parameters are used to generate a span-

. wise distribution of thrust and torque. Empirical data are

used to translate the inputs into performance data. The
lift coefficient correction curve for three-dimensional
(aspect ratio) effects is shown in Fig 21. Corrected 1lift

coefficient is the least manipulated performance parameter
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in the p-ocedure, therefore it is used for comparison with

the results from the vortex lattice method.
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Appendix E - Momentum Theory

One of the analytical aspects which is peculiar to pro-
pellers that is not covered in this thesis is the influence
of wake extension due to flow accélerafion through the pro-
peller. 1In this model, the wake is_presumed to be a helix
with a helix angle independent oi axial location. Since the
shape of the wake is depéndent upon the relationship between
axial and rotational velocity, the previously mgFtioned
change in axial velocity becomes important in finding the
actual wake shape.- An approximation for change in axial
velocity is predicted by the momentum equation (Ref 9).

The Rankine-Froude momentum theory for propellers assumes
that the propeller disk may be physically replaced by an
actuator disk that has an infinite number of blades and that
is capable of producing a uniform change in velocity of the
air stream passing through the disk. The momentum theory
is useful in determining theoretical maximum efficiencies,
but tells nothing about the effects of a finite number of
blades of finite thickness.

In developing the momentum theory, a perfect incompres-
lSible fluid in a constant energy (irrotational) flow is
assumed in front of and behind the disk, but not through the
disk itself. The streamlines of the flow past the disk are
shown in Fig 11l.

Referring to Fig 13, the pressure in the freestream is
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p and th: velocity is V. As the air stream approaches the
front disk face, the velocity increases until it - .ieves a
value V+v through the disk an( at the same time, the pres-

sure drops off to a value p°. At the disk, energy is added

in the form of an increase in pressure p. Aft of the disk,
the pressure drops to the freestream value, and far behind
the disk, the air has a velocity V+vl. The high-velocity
stream of air behind the propeller is referred to as the slip-
stream or wake. ’ - _
Although Bernoulli's equation does not hold for flow
through the disk, it does hold for the flow in front of and
behind the disk; thus we may writg

total head in front of disk = H

2 2 ‘

=p+-2‘2r—=p'+2.(y;£l)_' E-=1
total head behind the disk = Hj

= ’+A +p—(l+_v)i___ +O(V+V)2 E-2

P P 2 p+ =i -

The change in pressure across the disk must be equal to
the change in head, or, using the second evaluation for Hy

in Eq E~-2 and the first evaluation for H in Eq E-1,

2 2
Ap = H-H = p + p(Vavy)™_ (p+9%—)
2
= p(v+vl/2)v1 E-3

where Ap is the average change in pressure over the disk.
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The thrust acting on the disk is

T = AAp

where A = disk area; or, from Eq E-3,

T =Ap(V + “1)v
2

1 E-4

To obtain a relationship between vj and v it is neces-
sary to write another equation for thrust. This may be done
by considering the change in momentum of the air produced by

the disk. Newton's second law,

- - - . = = mdv
T =ma = Zg¢ -

states that the thrust is equal to the change in axial momen-
tum per unit time. The mass per unit time is the mass flow

through the disk,

Q = Ap (V+v)
and
av =,vl
so that
. mdv _
T -——dt = Ap(V+v) vl E-5

Equating Eq E-4 to Eq E-5 we have
AP(V+ZL)V1 = Ap(v-l-v)vl

2
and so

v1 = 2v

Thus, the momentum theory states that one-half the
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velocity increase occurs in front of the disk and one-half
behind the disk.

The momentum theory shows how the velocity in the slip
stream can be significantly greater than the freestream vel-
ocity (particularly for heavily loaded propellers). This can
consequently stretch the wake a great deal. Remembering that
the Biot-Savart Law has an inverse-squared distance term, it
becomes apparent that the positioning of the wake filaments
could become significant for the case of the heavily loaded
propeller.

The model used in the current analysis uses flight speed
as the axial component of velocitx. As a next step, an iter-
ative solution would be required to get a better representa-
tion of the wake location, and consequently a more accurate

solution.
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